首页> 外文OA文献 >Sequential Patterns Post-processing for Structural Relation Patterns Mining
【2h】

Sequential Patterns Post-processing for Structural Relation Patterns Mining

机译:结构关系模式挖掘的序贯模式后处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sequential patterns mining is an important data-mining technique used to identify frequently observed sequential\udoccurrence of items across ordered transactions over time. It has been extensively studied in the literature, and there\udexists a diversity of algorithms. However, more complex structural patterns are often hidden behind sequences.\udThis article begins with the introduction of a model for the representation of sequential patterns—Sequential\udPatterns Graph—which motivates the search for new structural relation patterns. An integrative framework for\udthe discovery of these patterns–Postsequential Patterns Mining–is then described which underpins the postprocessing\udof sequential patterns. A corresponding data-mining method based on sequential patterns postprocessing\udis proposed and shown to be effective in the search for concurrent patterns. From experiments conducted on three\udcomponent algorithms, it is demonstrated that sequential patterns-based concurrent patterns mining provides\udan efficient method for structural knowledge discovery
机译:顺序模式挖掘是一种重要的数据挖掘技术,用于识别随着时间的推移在订购交易中经常观察到的项目顺序/伪出现。在文献中已经对此进行了广泛的研究,并且\ udexist拥有多种算法。但是,更复杂的结构模式通常隐藏在序列后面。\ ud本文首先介绍了表示顺序模式的模型-Sequential \ udPatterns Graph,它激发了对新结构关系模式的搜索。然后描述了用于发现这些模式的集成框架(后序模式挖掘),该框架为后继模式的udud奠定了基础。提出了一种基于顺序模式后处理的相应数据挖掘方法,该方法在搜索并发模式方面是有效的。通过对三种\ udcomponent算法进行的实验,证明基于顺序模式的并发模式挖掘为结构知识发现提供了\ udan有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号